Posts

Showing posts with the label #anomaly detection

Week 12 and 13: 17/9/2018 - 30/9/2018

Image
Anomaly Detection    Session with Satnam Singh sir  All the interns had a 2 hour long session with Dr.  Satnam Singh ,chief data scientist, Acalvio technologies, Bengaluru, India. In the session, he discussed various points and issues related to cyber security and online frauds and he shared some domain knowledge on the related topics and his team's work. It was an interactive session and he also asked about the work interns were doing. He shared his experience which benefited students and we learned some new approaches and terminology. Problem statement Satnam sir shared a  kaggle problem  and asked all of us to work on it. It was a credit card fraud detection problem and was to be solved as an anomaly detection problem with statistical way without using any libraries such as scikit-learn etc. Sir gave us ample amount of time to work on it before he would review all our progress and code. So after the session, we started exploring different...

Week 9 (27/08/18 - 31/08/18)

Image
ISB Videos This week we ended our ISB's Machine Learning course with the last two lectures which were on Text Analysis and Mining graphs. The topics covered were as follows: Word2vec Word2vec is a two-layer neural net that processes text. Its input is a text corpus and its output is a set of vectors: feature vectors for words in that corpus. While Word2vec is not a  deep neural network , it turns text into a numerical form that deep nets can understand. The purpose and usefulness of Word2vec are to group the vectors of similar words together in vector space. That is, it detects similarities mathematically. Word2vec creates vectors that are distributed numerical representations of word features, features such as the context of individual words. It does so without human intervention. T here are two types of Word2Vec, Skip-gram and Continuous Bag of Words (CBOW). I will briefly describe how these two methods work in the following paragraphs. Skip-gram Words are ...